Source code for geoh5py.objects.drape_model

#  Copyright (c) 2023 Mira Geoscience Ltd.
#
#  This file is part of geoh5py.
#
#  geoh5py is free software: you can redistribute it and/or modify
#  it under the terms of the GNU Lesser General Public License as published by
#  the Free Software Foundation, either version 3 of the License, or
#  (at your option) any later version.
#
#  geoh5py is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU Lesser General Public License for more details.
#
#  You should have received a copy of the GNU Lesser General Public License
#  along with geoh5py.  If not, see <https://www.gnu.org/licenses/>.

from __future__ import annotations

import uuid
import warnings

import numpy as np

from .object_base import ObjectBase, ObjectType


[docs]class DrapeModel(ObjectBase): """ Drape (curtain) model object made up of layers and prisms. """ __TYPE_UID = uuid.UUID("{C94968EA-CF7D-11EB-B8BC-0242AC130003}") def __init__(self, object_type: ObjectType, **kwargs): self._layers: np.ndarray | None = None self._prisms: np.ndarray | None = None self._centroids: np.ndarray | None = None super().__init__(object_type, **kwargs) object_type.workspace._register_object(self)
[docs] @classmethod def default_type_uid(cls) -> uuid.UUID: return cls.__TYPE_UID
@property def centroids(self): """ :obj:`numpy.array` of :obj:`float`, shape (:obj:`~geoh5py.objects.drape_model.Drapemodel.n_cells`, 3): Cell center locations in world coordinates. .. code-block:: python centroids = [ [x_1, y_1, z_1], ..., [x_N, y_N, z_N] ] """ if getattr(self, "_centroids", None) is None: if self.layers is None: raise AttributeError( "Attribute 'layers' must be defined before accessing 'centroids'." ) if self.prisms is None: raise AttributeError( "Attribute 'prisms' must be defined before accessing 'centroids'." ) self._centroids = np.vstack( [ np.ones((int(val), 3)) * self.prisms[ii, :3] for ii, val in enumerate(self.prisms[:, 4]) ] ) tops = np.hstack( [ np.r_[ cells[2], self.layers[int(cells[3]) : int(cells[3] + cells[4] - 1), 2], ] for cells in self.prisms.tolist() ] ) self._centroids[:, 2] = (tops + self.layers[:, 2]) / 2.0 return self._centroids
[docs] def clip_by_extent(self, bounds: np.ndarray) -> ObjectBase | None: """ Find indices of cells within a rectangular bounds. :param bounds: shape(2, 2) Bounding box defined by the South-West and North-East coordinates. Extents can also be provided as 3D coordinates with shape(2, 3) defining the top and bottom limits. :param attributes: Dictionary of attributes to clip by extent. """ # TODO Clip entity within bounds. warnings.warn( f"Method 'clip_by_extent' for entity {type(self)} not fully implemented. " f"Bounds ignored." ) return self
@property def layers(self) -> np.ndarray | None: """ :obj:`~geoh5py.objects.object_base.ObjectBase.layers` """ if self._layers is None and self.on_file: self._layers = self.workspace.fetch_array_attribute(self, "layers") if self._layers is not None: return np.asarray(self._layers.tolist()) return None @layers.setter def layers(self, xyz: np.ndarray): assert ( xyz.shape[1] == 3 ), f"Array of layers must be of shape (*, 3). Array of shape {xyz.shape} provided." self._layers = np.asarray( np.core.records.fromarrays( xyz.T.tolist(), dtype=[("I", "<i4"), ("K", "<i4"), ("Bottom elevation", "<f8")], ) ) self.workspace.update_attribute(self, "layers") @property def n_cells(self): if self._prisms is not None: return int(self._prisms["Layer count"].sum()) return None @property def prisms(self) -> np.ndarray | None: """ :obj:`~geoh5py.objects.object_base.ObjectBase.prisms` """ if self._prisms is None and self.on_file: self._prisms = self.workspace.fetch_array_attribute(self, "prisms") if self._prisms is not None: return np.array(self._prisms.tolist()) return None @prisms.setter def prisms(self, xyz: np.ndarray): assert ( xyz.shape[1] == 5 ), f"Array of prisms must be of shape (*, 5). Array of shape {xyz.shape} provided." self._prisms = np.asarray( np.core.records.fromarrays( xyz.T.tolist(), dtype={ "names": [ "Top easting", "Top northing", "Top elevation", "First layer", "Layer count", ], "formats": ["<f8", "<f8", "<f8", "<i4", "<i4"], }, ) ) self.workspace.update_attribute(self, "prisms")